RADIATIVE HEAT TRANSPORT AND OPTICAL DENSITY IN LOOSELY PACKED FIBERS

N. V. Komarovskaya

Results are given on the effective thermal conductivity of loosely packed fibrous material in relation to optical density in the case of radiative heat transport.

This study is a continuation of experiments on radiative heat transfer in optically thin layers; results have been given [1] on radiative heat transport under conditions close to equilibrium for small heat fluxes. Here we present results performed over a wide temperature range using loosely packed fiber at temperatures up to 1000°C. The measurements were done at pressures of 10⁻⁴-10⁻⁵ mm Hg, which rendered negligible all causes of heat transport apart from radiation, while providing radiative equilibrium. The silica fiber was of diameter $8-10\mu$. The optical density was measured by varying the amount of material in the instrument.

The measurements were made by the classical sheet method under stationary heat-flux conditions. The effective thermal conductivity was measured with two equipments: with an electrical calorimeter [1] (range 300-500°K) and with a water one (range 500-800°K).

The effective thermal conductivity was calculated from

0.00

0.0

002

$$\Lambda_{\Delta T} = \frac{QL}{F\Delta T} \,. \tag{1}$$

3

The reduced degree of blackness was calculated from the relationships for unbounded plates using the heat fluxes determined in the absence of the specimen:

$$e_{\rm re} = \frac{Q}{F\sigma\left(T_1^4 - T_2^4\right)}$$

The maximum error in determining the effective thermal conductivity with the water calorimeter was 10%.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 3, pp. 529-532, March, 1974. Original article submitted January 15, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

(2)

Fig. 2. Ratio of thermal conductivities for optically thin and optically dense layers of silica fiber of bulk density $\gamma = 80 \text{ kg/m}^3$ as a function of optical density of layer. The curve has been calculated from (5); 1) Tav = 430°K; 2) 500°K; 3) 550°K; 4) 600°K; 5) 700°K; 6) 800°K. $\epsilon_{re} \approx 0.37$.

The average value was $\epsilon_{re} \sim 0.37$ within the limits of error of experiment within the above temperature ranges.

We measured the radiative heat transfer for an optically dense layer and used the following formula [1, 2]:

$$\Lambda = \frac{16}{3} \sigma T^3 \bar{l}, \tag{3}$$

to examine the photon mean free path as a function of temperature. We found that this was independent of temperature and was 0.53μ .

Figure 1 shows the effective thermal conductivity of an optically dense layer as a function of the cube of the temperature. It also gives the calculated results for an optically dense layer based on the experimental data for the thermal conductivity of a layer of low optical density. The figures have been calculated via a formula applicable to radiative heat transfer in a gray medium with diffusing boundary surfaces under conditions of local thermodynamic equilibrium and radiative equilibrium [1]:

$$\Lambda = \frac{1}{\frac{1}{\Lambda_{\rm r}} - \frac{1}{4\epsilon_{\rm re}\,\sigma T^3 L}} \,. \tag{4}$$

Figure 2 shows $\Lambda_{\tau}/\Lambda = f(\tau)$, which indicates that the ratio of the thermal conductivities of optically thin and optically thick layers is independent of temperature over the range used. This relationship is universal for a variety of materials [1]. The experimental results show that the effective thermal conductivity of an optically thin layer is directly proportional to the cube of the mean temperature in °K.

The values given in the figures were calculated with correction for the temperature gradient in the layer:

$$\Lambda = \frac{\Lambda_{\Delta T}}{\varphi\left(\Delta T\right)} \, .$$

The correction was introduced because the difference in temperature between the hot and cold surfaces rose to 1000°C in the high temperature tests. The correction was calculated from the following formula [3]:

$$\Psi(\Delta T) = 1 - \left(\frac{\Delta T}{2T}\right)^2.$$
 (6)

These experimental results show that the gray diffusely radiating and reflecting surfaces around a thin layer of fibrous material can be incorporated as regards their effect on the transfer via (4) for a wide range of temperatures, and one can use the correction of (6) even though the radiative heat transport rate is high.

NOTATION

Q	is the heat power, W;
$\Lambda, \Lambda_{\tau}, \Lambda_{\Delta T}$	are the radiative thermal conductivity of optically dense layer, effective thermal con-
	ductivity of optically thin layer, and measured effective thermal conductivity, W/m · deg;
L	is the geometrical thickness of fiber layer, m;
F	is the working surface area of instrument, m^2 ;
$T_1, T_2, T, \Delta T$	are the temperatures of boundary surfaces, mean temperature of layer, temperature
1, 1, 1	drop in specimen, °K;
Ere	is the reduced emissivity of instrument;
σ	is the Stefan's bulk constant, $W/m^2 \cdot deg^4$;

(5)

is the photon mean free path, m;

 $\frac{\overline{l}}{\tau} = \mathbf{L}/\overline{l}$ is the optical density;

is the volume density of samples, kg/m^3 ; γ

is the correction for temperature drop in layer. $\varphi(\Delta T)$

LITERATURE CITED

- V. M. Kostylev and N. V. Komarovskaya, Inzh.-Fiz. Zh., 24, No. 5 (1972). 1.
- 2. J. M. Sparrow and R. D. Sess, Radiative Heat Transfer [Russian translation] (1971).
- 3. V. M. Kostylev, Thesis (1961).